Android – Part 2 – Android App Basics
Current 02/07/2012
Eclipse Configuration Details

1. Welcome screen – close this. It will not appear again, but may be accessed via Eclipse’s menu: Help/Welcome. The contents are of limited usefulness.
2. “Send Info to Eclipse” – this will appear from time to time. Do what you want to.
3. Workspace directory dialog: Each time you start Eclipse, you will be asked to confirm (or change) the location of your workspace (for the project files you work on). The lab computers are set to use the network h:\ drive. We suggest you use this. Do not select the Use this as a default and do not ask again checkbox.
4. SDK location. In the lab, before you try to create a project, go to Windows/Preferences and enter the following SDK Location: c:\Progra~1\Android\android-sdk. Click on Apply. You will see a list of SDK versions appear.
The actual path is c:\Program Files\Android\android-sdk but Eclipse in this context does not work with directory names with embedded spaces. Grrr.
4. Creating an AVD. Before you run a project, you must select or configure an AVD (Android Virtual Device, or “emulator”). To do this, choose Window/Android SDK and AVD Editor, highlight Virtual Devices, and click the New button. Enter a name such as MyAVD, a target such as Android 2.2 – API Level 8, a (memory) size such as 100 MiB, and a Built-in Skin such as WVGA800 (large) or WVGA400 (smaller). Click Create AVD and wait until it is done.
You can create multiple AVD’s but one is enough for now.

Project Directory Structure – Eclipse Version

Every Android project consists of many files – some that are written by the programmer and some that are automatically generated.

These files are stored in a specific directory structure. You do not have to create this structure, but you should be aware of it so you can check and confirm that it is correct and complete.

The Eclipse version differs in small respects from the command-line version. The view that Eclipse shows you is abbreviated in certain respects.

Here are screen shots of a simple project:

	Eclipse View
	Windows Explorer View

	[image: image1.jpg]4 12 HelloDate|
4 2 Android 22
i sncroidjar-
s
4 8 edunivcshellodate

[3) HelloDateActivityjava
4 88 gen [Generated Java Files]

4 8 cdunivcshellodate
> [Riava
assets

Program Files\Android\ant

4B

& drawable-hdpi
» & drawable-ldpi
» & drawsble-mdpi
4 & layout

6 mainami
4 (& values

4 stingeami
AndroidManifestami
defaultproperies

proguard.cfg

	[image: image2.jpg]4\ HelloDate
Ul settings
U st
40 bin
i cdu
A0 i
Al =
. hellodate
2l gen

edu

P
i hellodate
Py
L drawable-hdpi
) drawable-Idpi
Ul drswable-mdpi
U tayout
Ul values
Y
i cdu
A0 i
o P
B hellodate

Notes:
· The Windows view expands the package directory structure. (edu/niu/cs/hellodate); Eclipse compresses it to save space.

· Eclipse shows the Android SDK version and its jar file although it is just a logical link, and not really in the Project directory.
· Eclipse shows some files in directories (.java. .xml, etc.) for ease in editing them. (Double-clicking one of them will open it in the Eclipse editor.)
· In this diagram, Eclipse does not show the bin directory at all (bin contains .class files and the Android executable .apk file once the Project’s .java code is compiled). Since you would never want to edit them, they are not displayed. However, new versions of Eclipse do appear to show it.
The Basic Programmer-written or -edited Project Files

1. AndroidManifest.xml – a basic version of this file is automatically generated by Eclipse after you create a new Project. Information encoded in this file comes from the names that you fill into the New Project wizard. Later, in projects that are more complex you will need to add additional information into this file.

2. main.xml – a basic version of this file will be created automatically, but normally you will edit it extensively. It contains declarations, names, and attributes for all the GUI components (“widgets”) in your program (although it is possible to do much of this work in Java code, it is not standard practice).
It also contains information to specify the layout (arrangement on screen) of the GUI components. Note that when editing this file, you have access to a tab (Graphical Layout) that will show you the GUI layout as currently defined in this file. Any change in one version (view) of this file will be reflected in the other view – so you can go back and forth between text editing and drag-and-drop editing. Right clicking on a component in the Graphical Layout view will show a pop-up menu of component attributes, which you can then select and set. Again, any new setting will then be visible in the text view.

main.xml is in the \res\layout directory in your Project.
3. YourProject.java - Under src\...package name\, Eclipse will generate a stub .java program with a name derived from the project name you supplied when filling out the new project wizard. The class generated will be derived from Activity and will be named the same as the Project. The Activity will include a minimal onCreate() method to which you will add code begin to implement the functionality of your app.
Getting Started – the HelloDate Project
This app is a little more than the traditional “Hello, world” program that is presented for any new programming language.

(Note: In the Android Eclipse environment, you don’t have to write any code to do “Hello, world”. Just create a new Project named “Hello World”, open the .java source code, and save it. This will compile it. Then run it, assuming you have created and installed an AVD (Android Virtual Device or “emulator”). You will see the device emulator displaying “Hello World”.)
HelloDate adds some interactivity. It consists entirely of a Button. When the app first appears display a “click me” caption on the button and then every time you click its surface (the Button), display the current time and date. So we are adding a GUI component (widget), a user action, and an action response to the traditional static hello, world.

To create and run HelloDate:

· Choose File/New/Android Project (or it may be under File/New/Other/Android/Android Project).
· In the wizard, enter a name for the project and select Create new project in workspace.

· Under Build Target, select a target version of Android, such as 2.2…

· Under Properties, enter a name for your application (such as HelloDate) and a package name (such as niu.edu.cs.yourname.hellodate).

· Select Create Activity (this will generate a stub .java file).

· Click Finish
· Edit and save the main.xml file adding a Button to the layout. Just use the Graphical Layout editor. Note the id of the Button as given in the text view.
· Edit the .java file. Use notes from the code developed in class. You will need to:

· Declare that you implement OnClickListener

· Write the code for the onClick() method which displays the date as the Button’s caption. (Use new Date().toString())

· Obtain a reference to the Button via findViewById().
· Call setOnClickListener() in onCreate() for the Button.

· Any tiny red boxes along the right margin of the java edit panel indicate compile errors. Hover your cursor over them and a (hopefully useful) error message will appear. Fix them and try again.

· Note that you will need to save the file before it will run. Eclipse will prompt you to save it if you have changed the file since the last compile/run.
· Run the program – use the menu’s Run/Run or the little green icon with the right-facing arrow in it.
You should see the emulator pop up in a few seconds. The program might take anywhere from a few seconds to a minute or two to be ready. Watch the bottom text window (the Console) for messages such as (in order, but some are omitted here):
· …waiting for HOME…
· …uploading HelloDate.apk…

· Success!

· Starting activity….

· … starting Intent…

As soon as you see the Intent message, your program is ready to run on the emulator. If necessary, swipe the start button and select the HelloDate icon if the program does not run automatically.

You should see the “click me” caption displayed. Clicking on the Button should cause the time to update (and the date, if you do it just before and after midnight!)

Notes on HelloDate.java
package edu.niu.cs.hellodate; // Note A
import android.app.Activity; // Note B
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import java.util.Date;

public class HelloDateActivity extends Activity // Note C
 implements View.OnClickListener
 {

 Button btn; // note D
 @Override

 public void onCreate(Bundle savedInstanceState) // Note E
 {

 super.onCreate(savedInstanceState); // Note F
 setContentView(R.layout.main); // Note G
 btn = (Button)findViewById(R.id.button1); // Note H
 btn.setOnClickListener(this); // Note I
 }

 public void onClick(View view) // Note J
 {

 btn.setText(new Date().toString()); // Note K
 }
 }
0. Note A: package name is taken from new project wizard

1. Note B: imports are mostly for Android library (package) methods.
2. Note C: Activity is the base class of most Android apps; the implements clause is needed to make event handling work (as are interfaces such as ActionListener in Java Swing). See the next section for details.
3. Note D: here we declare a Button widget.

4. Note E: this is where execution begins for an Android app. Its argument could contain information from the last execution of the app. Here it is not used.

5. Note F: always call the super class version to perform default processing.

6. Note G: use the main.xml file in the \res\layout directory as the app GUI.

7. Note H: here we create the Button reference via a call to get the ref from the R.java file which was generated automatically from the main.xml file. Button1 was the id generated (and not changed) by the Graphical Layout editor.

8. Note I: here we specify that this object (the app) should get Button click events (via a call to onClick().
9. Note J: onClick() is the (required) implementation of the OnClickListener interface. It is the method called when the user clicks the Button.

10. Note K: we get and display the time/date on the Button face.

Simple Event Handling Framework

When the user clicks a Button (or does other actions) a user event is generated. At the hardware level, this is an OS interrupt. It is put in an event queue and eventually gets sent to the widget on which the event occurred (a Button for example).

How does your code get called as a result of this?

In Android programming, there are several coding patterns to effect event handling. We will cover three, each of which is commonly used.

Event Handling Pattern 1 – the traditional way.
First, your code must do a few things to set things up.

1. The app must declare that it implements View.onClickListener. This is a promise that the compiler will enforce, that the program will supply all the methods specified in the View.onClickListener. You can look up any interface and find the list of required methods. In this case, there is only one: public void onClick(View v).
2. Write that method in your program. Understand that it will be called (somehow; to be explained below) when the user clicks on a Button (and for certain other events as well).

3. Declare a Button reference (the source of a user event) and then get and save the reference to it (we’ll call it btn.). (Most often done via findViewById()).
4. Tell the Button what object will be responsible for handling or responding to the event. (The Button should not do it, because the Button is a separate object and knows nothing about the main app: not its purpose, its logic, its variables; nothing!) You do this by calling:
btn.setOnClickListener(this);
where
btn is the reference to the Button and this is the reference to the object whose onClick() method is to be called when a click event occurs on this Button.
Strictly speaking, the only requirement of this is that it be a refrence to an object that implements View.onClickListener (that is, that promises to have an onClick() method). Steps 1 and 2 above have done that. We could pass some other object that implements View.onClickListener, if there were a good reason to do so.

Now when the Button’s setOnClickListener() is called, the passed argument (a ref to an object that has an onClick() method) is stored in the Button object for later use. That passed argument is declared (in the Button object) as an instance of the View.onClickListener interface.
So we can imagine that in the Button class there is a declaration to store that reference and that the method signature and its first bit of code would look like this:

class Button ... // “imagined” code
 {

 private View.OnClickListener handler;

 public void setOnClickListener(View.OnClickListener h)

 {

 this.handler = h;

 ...
 }
(Note that the argument and the instance variable are declared to be of the interface type, not the actual class type. In this way, Button can call any object’s onClick() method (and only that object’s onClick() method). Why? Because the argument type is View. OnClickListener and so it must have an onClick() method. If it did not, the compiler would detect that the object passed did not match the argument type and signal an error at compile time.
Now things are set up so that when a click happens, this Button object can call

handler.onClick(this);
The this in the line above (in the example, the Button itself) becomes the argument received by onClick() as a reference to a View object – onClick() can test it to see which (of possibly several) View references it is. (Note that Button is a subclass of View, so the code can typecast View to Button).

So at run time, what happens? Something like this:

1. The user clicks the Button. An interrupt occurs. The JVM is eventually given this event and determines that it happened to the Button.
2. The JVM calls a method in the Button to tell it that a click occurred.

3. The Button uses the previously-stored handler reference to call the event handler in the app.

4. The app’s onClick() is executed to perform the desired actions. It can check its argument to find out which component the event happened on as follows: more than one widget could generate user events. In that case, code in onClick() can figure out which one it was and do different actions accordingly. Using the argument name from HelloDate above:

if (btn == (Button)view)
 // do action 1

else if (otherBtn == (Button)view)

 // do action 2

etc.
Event Handling Pattern 2 – using inner classes.

As we saw above, it is possible that multiple widgets can cause onClick() to be called. This could potentially create an overly large and complex onClick() method. One alternative is to associate a unique OnClickListener object with each event source.

First some background. You know that an Interface is an official Java construct. It consists basically of a set of method signatures (abstract methods) that any class that implements the interface must supply. There is no code in an interface definition.

You also know that any class can implement an interface and can then be considered as an instance of the interface (rather than as an instance of its actual class) if need be. When an object is considered as an interface type, it can not be used as an instance of whatever class it might actually be. That is, only interface methods can be called when an object is used as an interface type, not any other methods that are part of its actual class.
So in the example of Pattern 1 covered above, the Button may safely call onClick() in the Activity because the thing (object refernce) passed must have been passed as an OnClickListener implementer and thus is guaranteed to have an onClick() method. The Button does not know about and thus cannot call any other methods in the Activity (the object whose reference was passed; this in the example above) - which the Button only knows as a click-listener).

Ok. So what you might not know is that you can create an object as an instance of an interface without specifying a class for that object. No one knows (except maybe the compiler) what the actual class name of this object is. Everyone (including you, the programmer) just knows it as an interface type – that is, it is guaranteed to implement the interface mehtods.

So you can do something like this:

Declare a reference to an interface-type and create it:

public OnClickListener button1Listener = new OnClickListener()

 {
 @Override

 public void onClick(View v)

 {

 button1.setText(“button1 was clicked”);

 }
 };
And then:

button1.setOnClickListener(button1Listener);

Notice what has happened:

· button1Listener is an object whose class we do not know (or care to know). It is an interface type: OnClickListener. It actually contains no code other than that required by the interface requirements.
· We have created an instance of this object via new.

· We have supplied the implementation of the needed method (onClick()) right here inline. This may be new to you also.

· We have told button1, via its setOnClickListener() method, that this object is the one whose onClick() is to be called. So button1 has its own custom event response method.

· This unnamed class that implements OnClickListener is known as an anonymous class (because we do not know its class name).
· Further, this class is known as an inner class because it is defined inside of another class (the Activity).

Some people like to condense this even further. We really don’t need the reference button1Listener because we can do this:
button1.setOnClickListener(new OnClickListener()

 {

 public void onClick(View v)

 {

 button1.setText(“button1 was clicked”);

 }

 }); // note the closing) to match the opening (just before “new”
The argument to setOnClickListener() is the entire definition of the interface type as well as the creation of the interface-type object (as an inner class of the Activity). The reference generated here (by new) is the argument to button1’s setOnClickListener(). This argument is stored in the Button object and used later as needed to call the onClick() method.

Again, the interface-type object is an anonymous inner class of the Activity, so we can refer to any instance variable in the Activity (the “outer” class) from code in the inner class.

This condensed version is equivalent to the example immediately above it. What has been eliminated is the explicit declaration of the reference variable to hold a reference to the interface-type object (named button1Listener above).
Event Handling Pattern 3 – via an xml attribute.

Probably the simplest way to do event handling is to specify the method to be called in the xml file as an attribute of an event source component. This hides most (all?) of the details needed to set up the event handling mechanism.

However, this does separate functionally connected parts of the code into different files. At the very least, a set of consistent naming conventions and response method documentation should be carefully written to help the reader.

Also, in some cases (such as when a widget is dynamically created in the Java program (and not in the xml file), this method is not applicable.

In the xml file, for any component (like a Button) whose OnClick events you want the associated Activity to handle, just add the onClick attribute:

<Button android:text=”…whatever…”
android:id=”@+id/button1”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”
android.onClick=”onButton1Click”

/>
Then, in the Activity that uses this xml file, code a method with the signature:

public void onButton1Click(View v)

 {

 // code here that will run when button1 is clicked

 }

And you are done! If this is, as the name implies, just for responding to button1 clicks, this is all you have to do. If several components name onButton1Click in the xml, then
a) it should not be named onButton1Click but (if it is)
b) you can look at the View argument to determine what component triggered the event.
Other Eclipse Usage Notes – in no particular order
1. If the results you are getting seem inconsistent or inexplicable, save your work and restart Eclipse. This will sometimes correct the “wrong” behavior.

2. A general “fix” for problems is to right-click on a project name in Package Explorer (left-most panel in Java view in Eclipse) and select Android Tools/Fix Project Properties. For example, when Java 1.5 features were used in a program on a computer that had Java 1.4 and Java 1.6 installed, and Eclipse was using the 1.4 version (causing multiple compiler errors), this fixed the problem.

3. Another thing to try with inexplicable problems is to execute Project/Clean form Eclipse’s menu

Page 7 of 11

