Android – Part 3 – XML and App Layouts
Current 02/27/2012
Overview

In traditional Java, GUI components such as JTextFields and JButtons are arranged and sized by specifying a particular layout manager (such as GridLayout or BorderLayout or CardLayout) or a particular class (such as JTabbedPane). After setting a layout manager for a Container (an Applet or a Panel, for example), individual components are added to the layout, and the layout manager arranges and sizes them according its own rules.
It is different in the Android world. First, all the GUI component classes have different names. All subclass the View class and so are called views. So Buttons, EditTexts, etc. are all known as views. We will call them widgets here.

The most commonly used technique for doing widgets and layouts in Android is to use an xml file and Java code together:
In an xml file:

· Define the screen layout, using one or more of the pre-defined layouts.

· Fine-tune the layout with layout attributes (properties).

· Declare the widgets (each is a particular type) in the order desired.
· Set most of the widget attributes (properties) (an id, text, color, font, etc.).
Eclipse has a built-in GUI editor for helping with this. When you open an xml file, the editor panel that opens has two tabs on the bottom: Graphical Layout and xxx.xml.

The .xml tab allows text editing of the xml file. The Graphical Layout allows drag-and-drop creation and editing of the layout’s widgets (with a few limitations), which automatically creates the corresponding xml code. Right-clicking on a widget in the Graphical Layout displays a pop-up menu of attributes from which you can select and set most attributes.

Changing something in the Graphical Layout will immediately cause a corresponding change in the text version. However, the new xml text will not be nicely formatted. Pressing Ctrl-Shift-F will reformat the xml (however in some cases the whole document will not be re-displayed correctly – in this case going to the document top and scrolling down should correct the display inaccuracy).

Changing something in the text version will also cause an immediate change in the Graphical Layout view.

To access various widgets in your program, then, in Java code:

· Declare references to any widgets that will be used (i.e., whose methods will be called in the program).
· Obtain references to these widgets (using FindViewById()) for each, typecasting the returned references properly, and storing them in the declared Java reference variables. Note that these widgets must have the id attribute defined in the xml file.
· Use them in the normal way (for example, get/set text in an EditText or set up event handling for a Button).
The xml Layout File and Android Layouts
Note: developer.android.com/reference is an excellent online resource for all the properties of all the layouts and widgets in the Android universe. Learn to use it.

Each Android program – or more accurately, each Activity-derived class (since an Activity defines a screen and its functionality) - will have an xml file that defines the widgets, their attributes, and their arrangement on the screen (the layout). This file is normally named main.xml for an app with a single Activity, but it could be named differently if you choose. Apps with multiple screens (Activities) will have one xml file for each screen, named as you choose.
Each Activity will specify its screen – its GUI – via the setContentView() method, usually in onCreate():
setContentView(R.layout.main);

where

· R is R.java, the auto-created resource file,

· layout is a sub-folder of res (“resources” in your Project’s workspace) in which the layout xml file is stored, and

· main is the name of the xml file without the .xml extension.
The xml file will contain elements and values that describe one or more layouts for the Activity (multiple layouts can be specified sequentially, top to bottom (or right to left if the layout is horizontal), or layouts can be nested). The xml file also will supply elements to define and describe the various widgets (within each layout) that will populate the screen.

When Eclipse auto-generates a skeleton xml file, the first line is standard and will usually not change (xml version, Unicode).

In the simplest case, next will be a layout tag with some attributes, followed by a number of widget definitions and descriptions. These are considered to be children of the layout.
There are several commonly used layouts for Android devices. A list and brief description of several are given below; more information can be found in books and on-line references.
LinearLayout – similar to regular Java’s FlowLayout. Widgets are added left to right or top to bottom as specified by android:orientation and modified by android:layout_height and android:layout _width.
Relative Layout – components are positioned relative to other components. When using this layout, each component must have an id so that others can identify what component they are near.
TableLayout – similar to an html table, this is a set of n rows, each of which can contain a (variable) number of widgets. The row with the most widgets determines the number of columns in the table grid.
FrameLayout – show just one layout at a time; used as part of a tabbed layout.

Much more information on layouts and widgets is at:

http://developer.android.com/guide/topics/ui/declaring-layout.html
Every layout will have a single root layout, often LinearLayout. Within this, you can insert widgets one after another, or even additional “nested” layouts with their own widgets.
For example, in the following skeleton code, note that the TableLayout is inside the LinearLayout, between the Edit Text and the “Press Me” Button:
<?xml version 1.0 --- >
<LinearLayout ---- stuff; attributes>

 <TextView --- stuff >

 </TextView>

 <EditText --- stuff >

 </EditText>
 <TableLayout --- stuff>

 <TableRow --- stuff >

 <!--insert 2 widget defs here -->

 </TableRow>

 <TableRow --- stuff >

 <!--insert 2 widget defs here -->

 </TableRow>

 </TableLayout>
 <Button --- stuff >

 </Button>

</LinearLayout>
[image: image1.jpg]Message Entry

By the way, if you want to make all the cells in a row the same width, include the following attributes for each widget in the row:
android:layout_width=”0dip”

android:layout_weight=”1”

If you want, say, ¼, ¼ and ½ proportions for 3 components, supply weights of 1, 1, and 2 (or 25, 25, 50) or the like, where the numbers indicate the proportion of their sum that the widget should occupy…
This works only if the “contents” of the widget (its text or caption, etc.) will fit in the space available.

ScrollView Layout - this very useful layout allows visual content that will not all fir on the small screen to scroll so the user can bring additional content into view by swiping the screen with a finger gesture. For example:

<ScrollView
 android:id="@+id/widget54"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 xmlns:android=“http://schemas.android.com/apk/res/android”
>
 <LinearLayout … attributes>
 … add all the widgets for this screen
 <\Linearlayout>
<\ScollView>
Note that a ScrollView can have only one child view or layout – usually a LinearLayout. That, in turn, can contain multiple child widgets or nested layouts.

Also, in the skeleton example above, the entire screen contents will scroll. You can make just a part of the screen scroll (for example, the top part is fixed and the contents below that can scroll. The principle is the same – the only change to the ScrollView attributes is that the xmlns attribute will move up to the overall parent screen layout element.
Android Widgets and their Properties/Attributes
Android widgets have an extensive variety of properties. Memorizing them would be a significant task although it is probably a good idea to know a few of the most frequently used properties. Fortunately, the Eclipse environment can help.

While you are editing a layout xml file, using the Graphical Layout view, you can right-click on a widget and see a pop-up menu of items. It is probably worthwhile to play with them to see what effect each item has. Note that many are listed under the Properties item – this sub-list itself is so long that there is a scroll arrow on the bottom.

A typical minimal widget might look like this (a text label):

<TextView android:layout_height=”wrap_content”

 android:layout:width=”match_parent”
 android:text=”My Title”>

</TextView>

Note the pattern and use of < and > and </ here. This TextView widget has properties (or attibutes) that are set inside the TextView tag. It has no child elements.

The properties are as follows:

· android:layout_height=”wrap_content” – this means the height is just big enough to display its content (the text in this case).
· android:layout_width=”match_parent” – this means that the width is as wide as its containing element (the screen). “fill_parent” is also used for this.

· android:text=”My Title” – here the text of the label is supplied as a String literal. If we wanted to use a String in the strings resource file, we would code “@string/str_name” as defined in res\values\strings.xml. Note: there is a GUI string wizard that you can use, or you can define a string resource directly in the strings.xml file with the following format:
<string name="str_name">Hello, Date</string>
Here are a few other useful properties for TextViews and EditText widgets:
· android:gravity=”center” – “gravity” can also work in up, down, right, or left directions in Android. In this case, it will pull the text to the center of the text box. (gravity_layout would pull the text box to the center of its containing element).
· android:textSize=”30sp” – sets the font size for the text. A number (30) and a unit (sp) are specified.
· android:layout_margin=”10dp” – sets a margin around the text’s bounding rectangle and the text box border.
· android:singleLine=”false” – makes the TextView a multiple-line text area. See also android:lines.

Other Android Widgets

EditText – this widget is a text box that allows user input. Some useful xml attributes are:
· android:id=”@+id/amount” – generates an id in the R.java file named amount, which can be referenced in code by:
EditText txt = (EditText)findViewById(R.id.amount);
(An id is needed for any widget used by your Java code.)
· android:numeric=”decimal” – restricts user data entry to decimal numbers. Non-numbers are not allowed. There are other valid values for this attribute.
· Android:layout_weight=”50” – used to help determine the width of a widget in relation to others in the same row (e.g. TableRow). The numbers for each such widget are relative. For example, if there are 3 in a row, weights of 25, 25, 50 (or 1, 1, 2) would make each of the first two take up ¼ of the width and the third would take up ½. This can be used with many different types of widgets.

· android:enabled=”false” – sets the background to gray and prevents user from typing in this EditText. You might want to do this to get the appearance of a EditText but not allow the user to change the value. Also see editable, which keeps the background white, allows widget to get the focus and accept pasted text, but ignores keystrokes. Calling anEditText.setKeyListener(null) in onCreate() has the same effect as enabled=”false” .
Again, note that if you want to call the methods of a widget in code (such as getText() or setText(String) for any widget), you must provide an @+id in the xml file so you can obtain a reference to the widget so, for example:

EditText txt = (EditText)findViewById(R.id.amount);

...

txt.setText(“hi”);
Note: many xml attributes have Java run-time (method call) equivalents. See developer.android.com/reference/android/widget for many details. For a given widget type, look for a table with columns headed “Attribute Name” and “Related Method”

For example:

android:text=”---“

widgetRef.setText(“---“);

android:gravity=”center”
widgetRec.setGravity(CENTER);

(CENTER is a final constant; its value is 17. There are other such constants, of course.)

android:enabled=”false”

no obvious equivalent for this.

	A Handy Technique

Often when you need to supply user input, the pop-up soft keyboard obscures part of your screen. You can programmatically make the soft keyboard go away. You might want to do this, for example, when the user has entered data and pressed the Calculate button. Making the keyboard disappear then reveals the entire layout – including the fields that display the answer(s) which otherwise might be hidden behind the keyboard.

Of course, the user can always dismiss the soft keyboard, but doing it automatically is a convenience.

Here’s how: assume a Button calcBtn, declare the following instance variable imm, and write a method as follows:
InputMethodManager imm = null;

private void hideSoftKeyboard()

 {
 if (imm == null)

 imm = (InputMethodManager)

 getSystemService(Context.INPUT_METHOD_SERVICE);

 imm.hideSoftInputFromWindow(calcBtn.getWindowToken(), 0);
 }
Then call this method, in this case in onClick(), when responding to the Button click.

(Question: could the calcBtn reference here be replaced by any other widget in the layout? One web-suggestion is to use this.getCurrentFocus())
The keyboard will reappear when the user next attempts to enter data into an EditText widget.

Spinner – this widget provides the user with a pop-up list of several options, only one of which can be selected. A typical xml entry might be:

<Spinner

 android:id=”@+id/colorSpinner”

 android:layout_width==”wrap_content”

 android:layout_height=”wrap_content”

 android:prompt=”@string/color_spinner”

 android:entries=”@array/color_list”>

</Spinner>

The entries and prompt properties require some explanation.
The prompt property requires a String resource. You cannot supply a String literal. You can code an xml entry in res\values\strings.xml (see above under TextView) or use the Graphical Layout tab to enter the information under Properties/prompt.
You will need to provide a list of the items from which the user will choose. Again, you must provide a String (array) resource in strings.xml, not a String array literal within the <Spinner> tag. Also again, you can use the Graphical Layout tab to enter the name of this array and values, or you can enter the xml manually. For reference, it would look something like this:
<string-array name=”color_list”>

 <item>Red</item>

 <item>Green</item>

 <item>Blue</item>

</string-array>

No id is set here, since your own code does not need to use the String array itself directly.

Finally, you have to go through a bit of work to retrieve the currently selected item. Since the selected item is (internally) a TextView the following code can be used:

Spinner spin = (Spinner)findViewById(R.id.colorSpinner);

TextView text = (TextView)spin.getSelectedView();

String colorStr = text.getText().toString;
Now colorStr will have “Red” or “Green” or “Blue”, assuming a selection has been made.
Check Boxes – are used to present a list of options where the user can choose 0 (zero) to all of them. Each check box has descriptive text next to it. Here is basic xml for a single CheckBox (You can use Graphical View to generate this):
<CheckBox

 android:id=”@+id/checkbox1”

 android:layout_width==”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”Show details”>

</CheckBox>

In code, you can use the CheckBox’s isChecked() method, which returns a boolean, to determine if it is currently selected or not. Of course, you must obtain a reference to each CheckBox using findViewById().
RadioGroups and RadioButtons – these are used to present the user with a set of 2 or more mutually exclusive options. The user can select one and only one of the several options. For example, the user could be asked how big to show an image – large, medium, or small. Obviously it makes no sense to be able to select more than one of these at the same time, since a choice of medium-small (or medium-rare) make no sense if the software is written to only support these three sizes. Each radio button has descriptive text next to it.
Each RadioButton is a child of a RadioGroup xml element (there might be more than one Group in a layout). The RadioGroup will probably have an id, as will each RadioButton.

Here is basic xml (You can use Graphical View to generate this; the id’s below have been manually modified from what is generated):

<RadioGroup

 android:id=”@+id/RBGroup01”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”>

 <RadioButton

 android:id=”@+id/RB1”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”
 andoid:text=”Large”>

 </RadioButton>

 <RadioButton

 android:id=”@+id/RB2”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”
 andoid:text=”Medium”>

 </RadioButton>

 <RadioButton

 android:id=”@+id/RB3”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”
 andoid:text=”Small”>

 </RadioButton>

</RadioGroup>

You can call isChecked() on a RadioButton, as with a CheckBox.

You can also register for clicks in the RadioGroup and supply a callback method that will be called anytime a RadioButton in that RadioGroup is clicked. You must implement an interface (one way or another) - in this case, the OnCheckedChangeListener. The code below shows one way to implement an interface. (This same technique could be done for responding to Checkbox clicks as well.)
Here is the skeleton code. Note that the implements clause is not required.

RadioGroup group = (RadioGroup)findViewById(R.id.RBGroup01);
group.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener()

 {
 public void onCheckedChanged(RadioGroup group,
 int checkedId)

 {

 if (checkedId != -1)

 {

 RadioButton rb = (RadioButton)findViewById(checkedId);

 // do something with/about rb

 }

 }
 }
);

Here, the call to setOnCheckedChangedListener does not supply a pre-defined reference to an object implementing the interface. Instead, it creates and object of the interface type and supplies the code for the required Listener-implementing object, created as a new anonymous object, as an argument to the setOnCheckedChangedListener call. The interface’s single required method, onCheckedChanged() is coded right here!

(See Notes Part 2 for a more detailed explanation of this technique.)

Notice that it is the RadioGroup that implements the interface. The callback – onCheckedChanged() then gets (as an argument) the int id of the RadioButton (as it is coded in the R.java file) that was clicked. It could then test it:

if (checkedId == R.id.RB1) … etc.

Also – finally, after 16 years of Java ignoring this issue – the Android flavor of Java supplies a program-based way to clear all the RadioButtons in a RadioGroup:
group.clearCheck();

By the way, this call not only clears the RadioButtons, so that none are selected, but it also causes a call to onCheckedChanged() - with none of the radio buttons selected - and the checkedId set to -1. This is why there is a test of -1 in the earlier code.
Landscape Orientation
When you rotate a tablet or phone, the screen should change to (at least) show the text and widgets in the proper orientation. Most devices will do this automatically, but they will not rearrange widgets to better fit the new screen width and height.

(Note: in an emulator, pressing Ctrl-F12 will toggle the display between portrait and landscape.)

The default screen orientation is portrait (vertical – the device is held so that its screen is taller than its width). You can programmatically specify an alternate arrangement for landscape (horizontal).

The basic idea is to create a new xml layout file and store it in the res\layout-land folder. This second xml file will (also) be named main.xml (or whatever the xml file for the portrait screen is named). The Android run-time system will sense the actual orientation of the device and will render the screen according to the proper xml file for the orientation. It will change this on-the-fly. It knows where (in what folders) to look for them.

To create an alternate layout for landscape orientation, start in Eclipse with File/New/Other and select Android XML Layout File and then Next.

Then make sure the Resource type is Layout and fill in the file name (probably main.xml). Click Next.

In the Available Qualifiers textbox, choose Orientation from the list and click the -> arrow to move it to the Chosen Qualifiers list; then click on that item and choose Landscape from the drop down list that appears to the right.
When you do this, notice that the Folder (shown at the bottom of the screen) changes to res/layout-land. Now click Finish and your skeleton xml file is ready to be edited.

If this procedure fails for some reason, you will need to create the layout-land folder (from Windows Explorer or an equivalent) outside of Eclipse. If so, then create a new xml file with a name like lmain.xml in res\layout and move it later (via Windows Explorer) to the res\layout-land folder, and rename it to main.xml.
You should understand that all of the widget android:id’s must be the same in the two files – and none can be omitted from one or the other of the xml files. The Java program will not know which xml file is being used – indeed, this will change as the user rotates the phone while the program is running. Calls to findViewById() which specifies the R.java constant for a widget must use a single id for each widget which will be displayed (in a different place and/or size) in the two layouts. The object corresponding to that id will not change during run time.
Likewise, you should use string resources for all TextViews, hints, EditText contents, error messages, Button captions, etc. This way, you define them in one place and need not duplicate them in two xml files. In any case, you must keep careful track of all the string resource names and id names as you develop your app.

Page 5 of 11

