Android – Part 5 – Tabbed Layout
Current 02/27/2012
Overview

A Tabbed Layout in Android is functionally similar to the TabbedPane class in Java's Swing: at the top of the screen are a couple or several labeled “tabs”. Clicking on one or the other will cause the area below the tabs to fill with one of two (or several) specific screens with widgets and functionality corresponding to the selected tab.
Note: in both the methods shown in this document, you may need to do all the xml editing in text mode. The Graphical Layout view may not work properly for this layout.

Method 1 – Using the Activity class:
In this method, the app derives from the Activity class. All code (functionality) will likely be in this single class even though the widgets that are being used may appear on (visually) different screens (or "tabbed panes"). Once set up, a TabHost object manages the visual switch from one tabbed pane to another. There is just one xml file that represents the tabbed layout as a whole, and also the individual tabbed panes as sub-sections within the xml file.
The example below outlines this technique for two tabbed panes, but more can be defined and used. However, since the selection "tabs" themselves take up a fair amount of space, only a few (at most) should be used.

XML Framework
The following skeleton xml code outlines the structure and tags needed to set up a Tabbed Layout to be used in an Activity-derived app..

Note that the android:id="@android:id/tabs" for the TabWidget below is a new notation. It denotes an android-system-defined id (not a user-defined “@+id/name” id like all the others here).
This id is required (as shown below), even though the id is not referenced in the code that we write. It is presumably used by the underlying code that implements the tabbed behavior.

In addition, the name tabs as the id name is required – it is not a user-defined name.

Don't believe me? Try omitting or changing it!

Similar comments apply to the FrameLayout’s "@android:id/tabcontent".
FrameLayout (used below to define the area under the tabs where the tabbed panes appear) is a simple layout, usually used to show one child view. If a second child view is displayed later, that new one is on top of (replaces) the old one. This is the behavior we want when we "switch" to a new tabbed pane view.
Condensed Example – note that the root element is TabHost:
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"

 <--! Etc. -->
 >

<--! Top-level Parent Container -->

<LinearLayout

 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<--! 1st Child of Top-level LinearLayout - the Tabs Widget -->

<TabWidget

 android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />

<--! 2nd Child - the Frame for the 2 tabbed panes -->

<FrameLayout

 android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<--! Now two or more Layouts for two or more panes -->

<--! First Pane - note id -->

<TableLayout

 android:id="@+id/tab1"

 <--! Etc. -->
 >
 <--! TableRows and widgets -->

</TableLayout>

<--! Second Pane - note id -->

<LinearLayout

 android.id="@+id/tab2"
 <--! Etc. -->
 >
 <--! wigets for this LinearLayout -->

</LinearLayout>

</FrameLayout>

</LinearLayout>

</TabHost>
So we have, as a collapsed hierarchy:
TabHost

 LinearLayout

 TabWidget

 FrameLayout

 TableLayout (tab pane 1)

 its rows and widgets

 </TableLayout>

 LinearLayout (tab pane 2)

 its widgets

 </LinearLayout>

 </FrameLayout
 </LinearLayout>
Java Code
The code below will set things up so that two tabs at the top (in the TabWidget) will control whether the TableLayout is visible or the (second-listed) LinearLayout is visible in the screen area below the tabs.
In onCreate() the following steps are needed:

 // main.xml has the complete layout whose "skeleton" is shown above
setContentView(R.layout.main);

 // Get the id of the overall TabHost layout

TabHost pgmTabs = (TabHost)findViewById(R.id.tabhost);

 // perform necessary API initialization

pgmTabs.setup();

 // Create a reference to a Tab Specification object that will hold
 // the specifications of one tab and the layout to be used when it is

 // clicked.

TabHost.TabSpec spec = pgmTabs.newTabSpec("tag1");

 // Now specify the id and tab text and add the spec to the

 // TabHost object.
 // Ignore the String arg to newTabSpec: we will not use it.
spec.setContent(R.id.tab1);

spec.setIndicator("Borrow");

pgmTabs.addTab(spec);

 // Do it again for the other tab. Re-use spec
spec = tabs.newTabSpec("tag2");

spec.setContent(R.id.tab2);

spec.setIndicator("Interest");

pgmTabs.addTab(spec);
Method 2 – Using the TabActivity class:

In this method, the app derives from the TabActivity class. Code and xml will be broken up into separate files and classes for each tabbed pane.
Because of this, the separate classes (which correspond to the individual tab screens) will not be able to share data (easily). In Method 1, since all code is in one class, the variables can all be stored in that class and thus shared.

Again, once everything is set up, a TabHost object manages the visual switch from one tabbed pane to another.

TabActivity is a sub-class (specialization) of Activity which simplifies some aspects of the coding. Perhaps the biggest simplification is that the xml and code for one tabbed pane is independent of all xml and code for other pages. This divide-and-simplify process can be a huge advantage in code clarity and maintainability. It will work best when the various tabbed panes do not share functionality or data. For example, one tab might do temperature conversions, one might do monetary conversions, and one might do length-unit conversions. Each is a stand-alone task. Each might have a Convert Button. With separate files, you can name them all the same if you like: convertBtn.
Note: as you develop and add new classes to an Android project, do not forget to add them to the project’s manifest file. Every called class (i.e. the launch class and any Intent targets) must have entries in the manifest:
<activity android:name=".MortAct" android:label="@string/app_name">
<intent-filter>
 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

</activity>
.MortAct is the Activity name that uses this screen. The period is a shortcut notation to indicate the package name for this class (and thus form the compete name of the class). The intent-filter portion might not be needed since the values in them are the defaults.
XML Framework
For the main program (the TabActivity class) the main.xml is simple - there is none. TabActivity has, in effect, its own top-level layout.
For each of the tabbed panes, create a programmer-named xml file that just describes the layout(s) and widgets for that pane, and nothing more. Save these in the /res/layout folder.
Java Code
The TabActivity class that will begin this program’s execution will be very short. It will just set up the TabHost. The code below will set things up so that the Tabbed behavior works just as before. The actual work is done in the separate classes that implement the functionality of each tabbed pane.

For the TabActivity class, declare:

TabHost host;
Intent a, b; // probably could re-use one of these
TabSpec aSpec, bSpec; // could be local in onCreate()
In onCreate() the following is needed to set up a 2-tab tabbed system:
// Note: setContentView(R.layout.main); - not needed as TabActivity // has its own layout.
// Also host.setup(); is not needed.
host = getTabHost();
// A TabSpec is a specification of a Tab – its caption and what to do

// if a tab is clicked (call an Activity-derived class as the tab page // to display). They are stored in the TabHost object for use to

// display the tab and as the user clicks on a tab.

aSpec = host.newTabSpec("A");
aSpec.setIndicator("Tab A");
a = new Intent(this, Activity_A.class); // list in manifest
aSpec.setContent(a);
bSpec = host.newTabSpec("B");
bSpec.setIndicator("Tab B");
b = new Intent(this, Activity_B.class); // list in manifest
bSpec.setContent(b);
try
 {
 host.addTab(aSpec);
 host.addTab(bSpec);
 }
catch (Exception e)
 {

 // See Lecture Notes Part 4
 Log.d("ERROR:", "Problem is: " + e.getMessage());
 }
This should look pretty familiar from Method 1. The main difference is in the setContent() of the TabSpec object.
In Method 1, we used setContent() with an R.id to identify the View/Layout we wanted to use (in effect a sub-section of the xml file).
Here we use setContent() with an Intent to specify the Java class name of the class that will “run” this tabbed pane. An Intent is an object that is used to communicate a call to another Activity or Service. It has several flavors and purposes, but in this case, it gives the name of an Activity-derived class to run as a tabbed pane. This named class will have a call to setContentView() in its onCreate(), naming the xml file with the layouts and widgets that it uses.
Notice that there is no apparent way to pass arguments to this “called” class. In fact, there are techniques to make data available to the targets of Intents (and to get results back from them), but they are somewhat cumbersome, and will not be discussed here.

Method 2 Summary:

Each class that is called via an Intent when the user clicks on a tab

· will be defined in a separate .java file;

· will be part of the same package as the main class;

· will reside in the same \src and \bin directories as the main Java program;

· will use its corresponding xml (in \res\layout) file for its setContentView();
· will do all its widget reference creation as in a stand-alone Activity;
· will set listeners; respond to events; do calculations, etc., etc. for the task to be done.

· will extend Activity

And – again – don’t forget to add each of these to the manifest file.

Page 1 of 6

