Android – Part 6 –
Option Menus, and Calling Activities that Return Results,

Data Adapters, and Dynamic Widget Creation
Current 03/22/2012
Overview

A large proportion of mobile device apps store, display and manipulate data of one kind or another. That data can be stored in memory, in the device’s own storage (as xml data, files, or a SQLite database), or on a remote server accessible via the internet.

This section will introduce the topic of data via several related topics:

· Option Menus, which can be used to provide selection choices to the user. One such use is to a call to another Activity which can then collect and return data to the main Activity.
· Data adapters, which provide a uniform interface to data-centric apps that can be used by the app without knowing the details of how or where that data is stored.

· Dynamic creation of widgets, in particular, display widgets (TextViews and the like), which is useful when the number of data elements is unknown in advance.

Option Menus

An Android Activity can have an options menu. This is a grid of one or more labeled rectangles that appear at the bottom of the screen when the user presses the dedicated hardware menu button (usually a little 2 x 2 array of squares). The menu that appears will overlay the bottom part of the screen. Normally you will see up to two rows of menu options. If there are more, they are accessible by pressing a “more” button on the menu grid. Each menu option can have a single submenu, but additional sub-sub-menus are not allowed.

When menu items are used to jump to other screens (Activities) they have the same function as a tab button. However, since they only appear when the hardware menu button is pressed, they do not continually take up screen space. Also, they might not be available all screens – the programmer has to decide and implement an options menu separately for each screen that requires one. So for any screen, the options menu could be the same or different than other screens, or could be missing entirely.

The call to a new Activity can be made in such a way that the called Activity can return data to the calling Activity. This will be described below.

In addition to options menus, Android also supports context menus. A context menu is a small pop-up menu, typically triggered by a long press on a widget with a context menu.

Some typical uses and examples of these are given in the text, Beginning Android 3, in Chapter 16.

http://developer.android.com/guide/topics/ui/menus.html has an excellent reference about menus in general with links to all the usual suspects.

Option menus are created and set up in a callback method named onCreateOptionsMenu(). This method is an @Override method (of the Activity class) and it gets a reference to an empty menu when called. So the method signature is:

@Override

public void onCreateOptionsMenu(android.view.Menu menu)

In this method you need to do the following, in order:

1. Call the superclass method, passing it the menu argument

2. Create the menu. This can be done via code (see the alternate Part 6 of the lecture notes for this technique) or by “inflating” a menu defined in an xml file (covered below).

3. Return true so the menu will display.

The xml file for a menu can be created in Eclipse’s xml editor. To use the Menu wizard, go to File/New/Other/Android XML File, press Next, and choose Menu from the drop-down Resource Type list.

The xml menu file will be stored in the res\menus folder, which the Menu wizard will create if necessary. Here is an example of a one-item options menu:

<? xml version= etc.>

<menu xmlns etc.>

 <item

 android:id=”@+id/item1_id”

 android:enabled=”true”

 android:text=”Item1 caption”>

 </item>

<!-- additional items -->

</menu>

Now in your code in onCreateOptionsMenu(), to create the menu, you execute an “inflate” operation in which the logical structure defined in the xml file is made into the appropriate Java objects and become operational as the Activity’s menu:

So, as Step 2 above, you will code something like the following:

MenuInflater menuInflater = getMenuInflater(); // this.getMenu….

menuInflater.inflate(R.menu.some_menu, menu);

Line 1 returns an object that can create a menu from xml code and install it in the Activity.

Line 2 accomplishes this by using some_menu.xml and by setting the menu argument (which is the argument passed to this onCreateOptionsMenu() method) to this newly inflated menu object.

Now you have a menu that will display when you press the device’s menu button. However, it will not do anything yet.

Calling Activities that Return Results

This is a general technique that can be used in contexts other than a menu item selection, but let’s assume that responding to a menu choice is our purpose here.

A. You must supply a callback method that will (automatically) be invoked when the user clicks/presses an option menu button:

public boolean onMenuItemSelected(int featureId, MenuItem item)

The important argument here is item – it identifies the menu button selected. You can test it against id’s from the menu xml file like this:

if (item.getItemId() == R.id.item1_id)

where

· item is the 2nd argument to the method

· item1_id is the id of a menu item as defined in the menu xml.

B. Now: if you have identified that a menu item has been selected that is intended to call an Activity that is to return data, you will

Step 1. Create an Intent identifying the Activity to be called:

Intent intent = new Intent(this, Abc.class);

Step 2. Call the activity, specifying that data will be returned:

startActivityForResult(intent, CODE_TO_IDENTIFY_THIS_REQUEST);

The CODE… is a final static int set to some value. Since you might call (at different times) the Abc.class Activity to do different tasks and return possibly different data, you will need to know which task you are asking Abc to do and thus the number and types of data to be returned (see onActivityResult() below).

Even more likely, you might call several different Activities at different points in your program, and onActivityResult() will be called when each of them returns. The CODE will tell you which one is returning and so you will know what (data) to expect.
However, you will not have access to the CODE in the called Activity. If you want the called Activity to different things at different times, you will need to devise a way to communicate this (perhaps via “extra” data passed. (See C. below.)

Step3. return true;
Important: if you have not already executed a return, the last line in this method must be:

return super.onOptionsItemSelected(item);

to ensure proper processing.

C. To return the data from the called Intent (the called Activity), to the calling Activity, execute the following from an appropriate place (perhaps in a Button press event response method in the called Activity):

// This will be the “return” Intent, i.e. the calling Activity.

// It is the “way back”. It “contains” the caller’s request code,
// invisible here, but available to the calling Activity upon return
Intent intent = getIntent();

// store the data to return into the “return” intent

intent.putExtra(“name”, “Joe”);

intent.putExtra(“phone”, “815 753-6496”);

// set the success/cancel code in the intent
// cancel is RESULT_CANCELED
this.setResult(RESULT_OK, intent);

// return to the calling Activity without creating a
// new instance of it:
finish();
Note: finish() is used instead of startActivity(). If you use startActivity() here, a new instance of the of that activity is created on the Activity stack. Doing this multiple times is a good way to run your device low on memory.

finish() uses the Intent (of the caller Activity) with the “extra” data that has been added to it, and returns to the original Activity instance (not to a new instance of it).

A callback in the original Activity (described above in onActivityResult()) will be called and will process the “extra” data passed back.
D. Supply a callback method in the original Activity (the one that is being returned to with the data results). This callback method will be called when the called Activity completes and returns data (via “extras” and finish()) as described above

protected void onActivityResult(int requestCode,
 int resultCode,
 Intent data)
· requestCode is the int code you specified in the startActivity() call so you know what data to expect.

· resultCode is a success-or-fail code set by the returning Intent. You can check it for RESULT_OK.

· data is the returned data – see below.

So if requestCode is (one of) your expected data identification codes and resultCode is RESULT_OK then you can get the data. In the simplest cases this is one or more name/value pairs of primitive data types (including Strings). The name/value pairs are set by the Intent before it returns. (See Step C., previous page.)

There are separate get methods for each data type. Suppose you expect two Strings, one called name and one called phone. You can get their values like this:

String a_name = data.getStringExtra(“name”);

String a_phone = data.getStringExtra(“phone”);
Getting results that are not Strings is similar; there are methods such as getIntExtra() for other types.
Simple Data Adapters

A common visual pattern in mobile apps is the display of a list of data (such as phone contact information, twitter messages, and the like). Usually we do not know in advance how many items will be in the list, so we have a problem in designing the xml layout with an unknown number of items. If there are many items, we will want the display to scroll. There are a number of obvious and seemingly simple behaviors that we require, but the solutions are far from simple.

Android data adapters provide a bridge or interface between data and the display of that data on screen. They automate and hide many of the details of how this is accomplished, leaving the programmer to customize some of the components and connect them.

ListView and ListActivity

If the app is to support the display of a series of Strings (a list of words or phrases) the solution is quite simple. The following code is taken from Beginning Android 3 and illustrates how this can be done. The app consists of a TextView at the top that will display the currently selected list item. This is followed by the list display, which displays one String per line and scrolls when there are more items than will display on the screen. Clicking on one item will display that item’s text in the top TextView.
main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:id="@+id/selection"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

 <ListView

 android:id="@android:id/list"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:drawSelectorOnTop="false" />

</LinearLayout>
Note that the layout includes a ListView for the scolling data, but no specification of the individual items. Also, the id for this ListView is an android system id: @android:id with a predefined name: list.
AdapterTestActivity.java file

package edu.niu.cs.jim.adaptertest;

import android.app.ListActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

public class AdapterTestActivity extends ListActivity

 {

 private TextView selection; // single TextView at screen top
 private ArrayAdapter<String> arAdapt;

 private static final String[] items = {"lorem", "dua", "tiga", "four"};

---> continued next page <---

@Override

public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 arAdapt = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items);

 setListAdapter(arAdapt);

 selection = (TextView)findViewById(R.id.selection);

 }

public void onListItemClick(ListView parent,
 View v,
 int position,
 long id)
 {

 // display the item pressed in the top TextView

 selection.setText(items[position]);
 // replace the 0th list item and redisplay the list

 items[0] = “new one”;

 arAdapt.notifyDataSetChanged();
 }

} // end AdapterTestActivity
Notes:
1. The data is in the array defined here in the activity. It could also be in storage or a database. This would involve additional code.
2. In onCreate(), the work is done to connect the data to the Layout via the Adapter:

a) The ArrayAdapter, arAdapt, is created with arguments to

· this Activity,

· an android predefined TextView, multiple instances of which will be filled in with the data
· the data array

b) The array adapter is registered with this Activity. It will now automatically use the ListView with id “@android:id=list” and will populate this ListView with multiple TextViews, each containing one element from items.
c) A reference to the stand-alone TextView is obtained.

At this point, if you compile before adding onListItemClick(), and run the program, you will see the list items, but clicking on then will do nothing.

3. onListItemClick() is a callback method in which you specify what to do when a list item is clicked (pressed). The arguments are the ListView and child View that were clicked, the position in the list, and the R.java id of that View. (In this case, the View is the predefined TextView that shows a String.)
In this program, since the position in the displayed list is the same as the position in the array, we just use the array String value to display in the stand-alone TextView. (Could you get the text from the List’s View and use it?)
Then, just to show how, we replace the 0th array element with a new String. This in itself will not update the display (although if you click on the still-visible “old” version you will see the “new” version in the TextView at the top). In order to update the display, we must call notifyDataSetChanged() on the adapter.
Of course, we could choose to do something else with or to the String.

This technique is quick and simple if you just want to display a list of Strings. If you have some other more complex, structured set of data (say two Strings, a double, an int, and an icon) you will need to do a little more work. (See Custom Data Adapters, below)
Dynamic Widget Creation

In the previous section, each array element was automatically converted from a String to a TextView widget and inserted into the ListView for display. This was done when the program started, and again each time notifyDataSetChanged() was called.
As mentioned above, if you need to populate a list item with more than just one String, you will need to do some customization, including writing a new DataAdapter class. The basic idea is that a single chunk of xml code will represent the blueprint for one list item and will be “reused” repeatedly as each list item is created (from stored data items) and added to the list display. (There will be many items displayed in your list, presumably.)
You have already seen the process of “inflating” xml menu definitions into program objects. The same idea will now apply to an xml file that represents a list item. You will write code and methods to apply this operation (which will be called repeatedly, once for each list item) to the operation of populating your list with data.

In the Activity that displays the list, you will write code similar to that in the simple list program shown earlier.
In the Custom List Example, assume that, in the Java code,
· myList is declared as a ListView

· myAdapter is declared as a MyAdapter (custom class)
· my_item.xml holds the definition of a layout (probably LinearLayout) containing child widgets (probably TextViews) that will display the item values.

	Simple List Example

	arAdapt = new ArrayAdapter<String>

 this,

 android.R.layout.simple_list_item_1,

 items);

setListAdapter(arAdapt);

	Custom List Example

	myList = (ListView) findViewById(R.id.my_list);

myAdapter = new MyAdapter();

myList.setAdapter(myAdapter);

The differences here are:
· We create and use a ListView object that will display all the data items – each item is defined by a separate xml file that may contain several data elements not just one String. (Simple uses an Android built-in View)
· We create an instance of our custom data adapter class (see below for details) which will own the data to display and will repeatedly inflate the xml representing a list item and add that to the displayed list. (Simple uses a predefined adapter that works for single-String items.)
· We arrange for the ListView (that is to be populated with log items) to use myAdapter (and its data). (Simple uses “this” as the holder of the View to display the list, and the data held in items).

So these few lines of code are all that are needed to set up the connection between the data and the screen elements to display it.

We need to discuss the custom Adapter class and the class used to hold the data representing one list item.

Custom Data Adapters

The custom adapter can most easily be written if it extends the BaseAdapter class. This basically means you will override a number of methods, customizing them for the actual data to be manipulated and displayed.
Assume that a class has been defined that holds data values representing one display item and has a suitable constructor and set/get methods for the instance variables. Let’s call this class ListItemData.

So once you’ve written the class header (with the extends clasue) for your new Adapter, you will want to know what methods you need to override. You can go to Eclipse’s Source (Override/Implement methods. It will copy in skeleton method bodies that you can modify.
For this task, there are four methods. All of them are callback methods that will be called as appropriate. Rarely, if ever, will your code call them.

1. public int getCount() This method should return the number of items that will be displayed in the list. If the data is in an array, return the .length of the array (or perhaps the number of non-empty elements). If it is an ArrayList, return the size() of the ArrayList. If it is in a database, return the number of rows in the database. Do whatever is correct for your data.

2. public Object getItem(int index) This method returns the index-th object in the set of data items. Again, the code that implements this will depend on how it is stored.

3. public long getItemId(int index) This method returns a unique identifier for the index-th data item. Often the value of the argument index itself is returned.
4. public View getView(int index, View view, ViewGroup parent) This is the method where the real work is done.

Declare a local reference variable for

LayoutInflater inflater;

ListItemData details; // the custom class for the data of an item

Next, test if the argument, view, is null or not. This method will be called once for each list item each time the list needs to be (re)displayed. The first time it is called, view is null. If this is the case, it must be inflated. All subsequent times, the already-inflated view is passed in again and it can be re-used, set with new data values to display in the next list item. This technique saves memory and is an important technique to use. So code:

if (view == null)

 {

 inflater = LayoutInflater.from(parent.getContext());

 View = inflater.inflate(R.layout.weather_item, parent, false);

 }

This is a little different in detail from the Simple ListView example earlier, but accomplishes the same thing.

Next, use the index argument of getView() to get the index-th data to be displayed in the currently-being-constructed item view. This might be array[index], or arrayList.get(index), a database query, or whatever is appropriate for your data:

ListItemData itemData = whatever needed to get index-th element of the set of items;

Then use findViewById() to get objects representing each of the display elements for the screen (probably via TextView id’s in the from the xml definition.
Note that the object to call findViewById() on is the argument view:

So, code something like:

TextView data_1 = (TextView) view.findViewById(R.id.data_1_id);

(data_1 and data_1_id are names I made up here.)

So as a result of these stepes, itemData contains the data values from one item in the stored data (Array or ArrayList or whatever). You also have references to the display widgets that should get the data values.

Next, put the data values (from itemData) into the display widgets:

// 1 such line per field of display element:
data_1.setText(itemData.getData1()); //assume getData1 returns a String
Finally,

return view;

Again, this method, getView() will be called for each display item. This will happen when the program begins and then again each time that notifyDataSetChanged() is called on the adapter.

Page 10 of 11

