Android – Part 7a – Local Databases and SQLlite3
Current 04/05/2012
Overview

The Android platform supports creation of and access to a local relational database (on the hardware or emulator). This database will persist on the device’s storage even when it is turned off and on again, or when the operating system shuts the app down.

The relational database, called SQLiteDatabase (the core class involved), supports a somewhat simplified version of the SQL language called SQLite. This database system is supported by the Android SDK emulator system, so database programs can be developed and tested using the emulator. Android Java programs can create, populate, edit, and retrieve data in these SQLite databases. In addition, the command line version of the sdk tools allows programmers access to a powerful text-based interactive tool to create, manipulate, and display SQLite databases. This is handy to check the results of program actions against the database directly, independent of an actual Java program.

Command Line sqlite3

The name of the command line tool is sqlite3.

Important: Before you run the sqlite3 program, you must have an emulator or a real device connected to your environment. sqlite3 will need to connect to the device or emulator to “see” or create a database –after all, the database is on the device (real or virtual) itself.

See the next section for instructions on how to create a database from an Android program. In the discussion below, we will assume we already have a database definition created that is named test.db
In order to access the interactive command line sql tool (sqlite3), you must

· Start a (Windows, linux, or Mac) command line console. In Windows, you will see the c:> prompt as usual.

· Change to the directory (cd) where the sdk-tools are located (on a Windows platform that could be in c:\Program Files\Android\android-sdk\platform-tools\).

· >>> Check that you have a device or emulator connected and running. <<<

· Start the adb program: adb shell. You will see the # prompt. You can now use unix-like commands such as ls and cd and rm.

· cd to the database directory on the device:
cd data/data/edu.niu.cs.your_app_pkg_name/databases (you can now ls to check that the assumed database is there)

· Run sqlite3 test.db Use the name of the database. You will see the sqlite> prompt.

You are now connected to test.db.

Now you can execute commands at the sqlite> prompt. These commands are of two types.

1. Standard sql commands against the selected database (test.db). sql commands in this environment must be terminated with a semi-colon. If you don’t terminate an sql command with a semi-colon, you will get a continuation prompt:

…>

until you enter a ;
For example:

select * from mytable;

2. sqlite3 commands. You can see a list of them by typing .help at the sqlite3> prompt. For example:

sqlite>.schema

will display textual information about the database you are working on (test.db).

Or,

sqlite>.quit

will quit you from the sqlite3 program and put you back in the adb environment.

Other useful commands:

.databases – lists available databases in this package (often will include a temp database).

.tables – lists the tables in the database.

.schema table_name – displays the schema (column types and names) of a table.

To display the contents of a table (for example, consisting of id, name, salary) on the screen, try the following:

sqlite> .mode column

sqlite> .header on

sqlite> select * from my_table where id < 10;

id name salary
6 joe 10.00
7 mary 12.00

9 frank 15.00

Note carefully at all times which “environment” you are in by noticing the prompt:

· the DOS command shell:
C:\blah\blah2>
· the adb shell:

· the sqlite3 program:

sqlite>
GUI Database Browser
A free GUI tool to browse your database can be found and downloaded at
http://sourceforge.net/projects/sqlitebrowser/
SQL Operations from Android Java Programs
This next sections of this document will cover methods to

· create an SQL database from an Android program

· populate the database (i.e. insert records)

· retrieve records from the database (i.e. select records)

· update and delete records

The Android system contains a number of classes to encapsulate details of relational database processing using SQL. Most of the database concepts and functions that you are familiar with are supported, but they are packaged differently in some cases, and, although they gererally allow the use of a simpler syntax, you will have to learn how to use the new “packaging”.

SQLiteOpenHelper

The Android system has a special class to aid in the creation of a database. It also allows you to easily change the schema of database table(s) (although its default operation will delete all data current data when a scheme change is made).
Scheme changes may involve new columns in tables, new tables, different data types for columns in tables, etc.

You will need to create a new class, extending SQLiteOpenHelper. You will write a constructor and override two methods. This is all standard stuff if you accept the default behavior, which is common. Basically you will supply the version number of the database, the database name and the name(s), column(s), and column data type(s) of the database tables.

You will make up your own meaningful names, of course, and PLEASE make the version number final int all CAPS.
In the following code and subsequent code examples, names that you define are bolded for clarity. Except for _id – see note following the code.
// class data

private final static int DATABASE_VERSION = 1;

//***

MyOpenHelper(Context context)

 {

 super(context, "database_name.db", null, DATABASE_VERSION);

 }

//***

public void onCreate(SQLiteDatabase database)

 {

 database.execSQL("create table mytable "

 + "(_id integer primary key, my_col_1 text,”

 + “ my_col_2 text)");

 }

//***

public void onUpgrade(SQLiteDatabase database,
 int oldVersion,
 int newVersion)

 {
 database.execSQL("DROP TABLE IF EXISTS mytable");

 onCreate(database);

 }

Notes:
1. Declare a final int to represent the database version. Start with 1. Every time you change something about the database definition (i.e. change the scheme), you must increment this number to the next integer and recompile this class. Then it works like this:

· if this is the first time the class has been created (i.e. the constructor called) – the database will be created and onCreate() will be called. (But see Note 6.)
· if this is a subsequent execution of the constructor, and this number has not changed, onCreate() will not be called and the database will be unchanged.
· if this is a subsequent execution of the constructor, and this number has changed, onCreate() will be called and onUpgrade() will be called. The original database will be dropped (deleted) and a new, empty-table database will be created defined (But see Note 6.)
2. The constructor, then, just calls the superclass constructor with the name of the data base and the version number.

The null argument could be an SQLiteDatabase.CursorFactory, to use for creating cursor objects, or null for the default. Cursors are covered later in this document – they provide methods for moving through returned database rows.
3.onCreate() then defines the table(s) that constitute the database. As you can see, this method gets the name of the database as defined in the constructor and then an execSQL command is executed, given an sql create command as text. Notice that onCreate() and onUpgrade() are passed an SQLiteDatabase, used to create the new database or upgrade an existing database.
4. onUpgrade(), as noted earlier, only gets called when the database version has changed. Here we do the simplest possible action – kill the old database and create a new one. It is possible to write code to transfer data from the old database to the new one.

After dropping the old version, onCreate() is called to create the new version of the table(s). Of course, it is still possible to drop and add tables in your own code in other parts of the app.

5. _id: This column name (with the “_”) is required for certain “enhanced Adapters which make use of a Cursor”. Database Cursors and the CursorAdapter will be covered later. The value of this column will be 1 for the first record added to the table and will autoincrement for each subsequent row added. The “autoincrement” keyword is not required.
6. Important: Executing the code shown here is not enough to create the database in storage. One more step must be done, similar to the following:
MyOpenHelper openHelper = new MyOpenHelper(this);

SQLiteDatabase database = openHelper.getWritableDatabase();
Or use getReadableDatabase() if you are only going to retrieve data, but not add, update,or delete rows.
Passing this to the MyOpenHelper constructor assumes it is being called from an Activity, which (indirectly) subclasses the Context class. Notice that the constructor of the superclass, SQLiteOpenHelper, takes Context as an argument – so the methods of the Context class (which are part of any Activity) are available to it.
So once you have done this, verify that the database is created using sqlite3. Check that your table(s) are created as you expect.
Finally, note that you also now have a reference to the database for later use. You will probably want to save it as an instance variable.
7. onCreate() and onUpdate() are callbacks. Do not call them from your own code.

Adding Records to a Database

Using the database reference that you obtained in Step 6 above, you can add records (rows) to a table. You may recall trying to form complex sql insert strings via concatenation in Java. Messy. Error-prone. The SQLiteDatabase class provides convenience methods to help in forming queries and commands. One is insert().
Others are covered here later and all can be found in the online documentation:

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
What you do is create a ContentValues object which contains pairs of column names and corresponding data values. String data are assumed in this example which follows the names and types in the table definition given earlier. The first argument to put() is a table name and the second is its value.
ContentValues contentValues = new ContentValues();

contentValues.put("my_col_1", str1);

contentValues.put("my_col_2", str2);

database.insert("mytable", null, contentValues);
The second argument to insert() is usually null. SQL doesn't allow inserting a completely empty row without naming at least one column name. If your provided ContentValues is empty, no column names are known and an empty row can't be inserted. If not set to null, the nullColumnHack parameter provides the name of nullable column name to explicitly insert a NULL into in the case where your values is empty.
This method returns the row number of the inserted record, or -1 if it fails. (This is not checked in the example above.) It can throw an (unchecked, obviously) SQLException.

Retrieving Records from a Database

A common operation is to retrieve 0 – many (or all) records from a database. In traditional Java,, you get a ResultSet object with methods to iterate through the rows. In SQLiteDatabase, you get a Cursor object with methods to iterate through the rows. There are a couple of convenience methods called query() with different arguments you can use, but if your query is simple, you can just execute a rawQuery() (only for select statements). Here it has been embedded in a wrapper method:
public Cursor getAllRecords()

 {

 return database.rawQuery("select * from mytable", null);

 }
As you can see, rawQuery() returns a Cursor. The second argument, null here, can be used to provide values to replace ?s in a where clause in the query. (An example will be given in “Updating” below.)
Cursor Use

After retrieval, you may need to iterate through the returned rows and use the data in them. The Cursor class has methods to enable you to do this. Some of the methods are shown below; their purposes are obvious.
// these return Boolean true if successful; otherwise false
moveToFirst()

moveToNext()

moveToPosition(int)

// these return boolean

isFirst()

isLast()
isAfterLast()

isBeforeFirst()
// returns int number of rows retrieved
getCount()

// returns value of data in this (0-based) columnNum
getFloat(int columnNum)

getInt(int columnNum)
getString(int columnNum)
… others for other data types
Here is some code to iterate through a Cursor’s rows. First make a call to retrieve some records. The column numbers assume the table structure previously defined where _id is column 0:
Cursor cursor = getAllRecords();

if (cursor.moveToFirst())
 {

 do
 {

 String s1 = cursor.getString(1);

 String s2 = cursor.getString(2);
 // do something with the two strings from each row
 } while (cursor.moveToNext());

 }

if (!cursor.isClosed())
 {

 cursor.close();

 }
A Cursor should always be closed when you are done with it, if you are managing it yourself, as we are here.

Updating Records
Updating selected columns in a database row is easily done via SQLiteDatabase’s update() method. Again, we use ContentValues and this time a replaceable ? parameter to identify the row that we want to update via the unique autoincrement _id column. We will update both String columns in the table records:

String id = “5”; // some String row number
ContentValues values = new ContentValues();

values.put("my_col_1", newStringValue);

values.put("my_col_2", anotherNewValue);

database.update("mytable", values, "_id=?", new String[] {id});

Here for the first time we see use of replaceable parameters - the third and fourth arguments:

“_id=?” is the equivalent of the where clause in a standard sql insert statement: where _id=something The “?” is the single replaceable parameter.
It is replaced by the first string in the fourth argument, which is a String Array. In other commands, there might be more replaceable parameters – more ?’s – and each one, left to right, is replaced by the next String in the String array.

In this example, then, the {id} is the initialization of the new (anonymous) String to a single String whose value has been already stored in String id.
Deleting Records
The SQLiteDatabase convenience method is delete().
database.delete("mytable", "_id=?", new String[] {id});

The middle argument is the where clause and can have multiple conditions with multiple replaceable parameters. Passing null deletes all the records in the table!

The method returns an int – the number of rows deleted.

Using CursorAdapter with a ListView
The CursorAdapter class can be used to connect data in a database with a screen ListView, similar (but different in detail) to the BaseAdapter class.

To create a custom CursorAdapter class, define a new class that extends CursorAdapter. Let’s call it (bad name!) MyCursorAdapter.

Again, programmer-defined names will be bolded.

public class MyCursorAdapter extends CursorAdapter
The constructor will look like this:

public MyCursorAdapter(Context context, Cursor cursor)
 {
 super(context, cursor);

 }

Now you need to override certain inherited methods. The two you will write accomplish the same things that getView() does for BaseAdapter – that is, they will inflate a View if necessary and move data for one List item into the View. These two functions are now separated into two methods – bindView() and newView(). Both are callback methods.
public View newView(Context context, Cursor cursor, ViewGroup parent)
This method is called only when there is no inflated View that corresponds to a List item. So you just supply the inflate code that you would have used for a BaseAdapter (see Lecture Notes Part 6a). Do not use the if condition to check for a null View argument – there is no such argument here because this will only be called when there is no inflated View yet.

Note well that newView() must return the newly inflated View.
public void bindView(View view, Context context, Cursor cursor)

bindView() is where you fill in the data values for the List item. Two things must be done here:
1. First, get Java objects for the various display widgets (EditTexts, etc.) just as you would for a BaseAdapter (again, see part 6a for details).

2. Then, using the passed-in Cursor object reference, get values from the current database row and use them to populate the widgets.
For example:
temp.setText(cursor.getString(1));
Here

· temp is a reference to a Java object representing an EditText or TextView
· cursor.getString(1);
obtains the String stored in the 1-th column of the row (not the 0th).
Note that if the data item is not a String, you will use another of the getXXX() methods and you may need to convert or typecast them to appropriate data types for display.

Do this for each field in the display to be populated with data values from the current database row. Recall again that this method (like getView()) will be called once for each row in the database.
Also Important:

· None of the other BaseAdapter methods are used (getCount(), getIndex() or getItemId())

· bindView() does not return anything.

One More new Class

It will prove convenient to create a class that encapsulates all the database functionality in one place that can be called from various points in your main Activity. It will simplify that Activity and will localize all the database code in one object.

So, create a new class. Let’s call it MyDataBaseHelper.
The first thing to do is copy the entire MyOpenHelper class code inside MyDatabaseHelper, as a private inner class.

Declare instance variables in MyDataBaseHelper to hold references to a MyOpenHelper and an SQLiteDatabase (called openHelper and database below.)

The constructor will look like this:

public MyDatabaseHelper(Context context)
 {
 openHelper = new MyOpenHelper(context);

 database = openHelper.getWritableDatabase();

 }
The instance of MyDatabaseHelper will (probably) be created from your main Activity. The main Activity will pass this as the MyDatabasehelper’s constructor’s argument and store a reference to the MyDatabaseHelper object for later use. The argument to MyDatabasehelper’s constructor, called context in the sample above, is then passed on to the constructor of MyOpenHelper, which does the database creation stuff if necessary, just as explained earlier.

Again, Activity is a subclass of Context, and so is a Context and so this is legal.

Then we call getWriteableDatabase() to get a reference to the database and store it for later use.

Next, recall the convenience method (shown earlier) which will return a Cursor that could be used in your program to iterate through the database one record (row) at a time. This method should be part of your MyDatabaseHelper class.
public Cursor getAllRecords()

 {

 return database.rawQuery("select * from mytable", null);

 }
You will not actually use the Cursor in a loop to do this if you are using a CursorAdapter. (You could use it to write a loop as shown earlier to go through the returned rows.) However, now you will just give the Cursor to the CursorAdapter to do the iteration (and List display) automatically. (See next section).
Finally, you should write several more convenience methods to do the various types of actions against the database (perhaps addRecord(), deleteRecord(), and updateRecord()). These will take the necessary parameters to enable the code in methods to accomplish their purpose. The actual database commands will use these values to help formulate ContentValues for sql convenience methods like insert, delete, and update or raw SQL commands for execSQL() or rawQuery().
The caller will just be able to make simple calls like:

myDatabaseHelper.updateRecord(----, -----, -----);

where the arguments are whatever data is needed to do the add operation (maybe column values and row number)

Connecting the Pieces
So now you know how to do database access and how to write a CursorAdapter that will be able to display database contents in a ListView belonging to an Activity. It remains to see how to wire them all together. Conceptually, it is similar to doing this in a program that uses BaseAdapter, but the details are different.
Given what we have developed so far, you have to

1. Connect the Adapter to the ListView

2. Arrange to update the ListView via the Adapter when data in the database changes

Remember so far we have (among other things):
· Defined classes: MyDatabaseHelper (which contains MyOpenHelper) and MyCursorAdapter.
· Written a method, getAllRecords() that returns a Cursor to the rows in the database

1. Now in your main Activity’s onCreate() you should get a reference to the ListView layout (probably in main.xml), create a data Adapter, and connect them. Assuming suitable declarations:
myDatabaseHelper = new MyDatabaseHelper(this);
listView = (ListView) findViewById(R.id.the_list_id);

myCursorAdapter = new MyCursorAdapter(this,
 databaseHelper.getAllRecords());

listView.setAdapter(myCursorAdapter);
Understand that the Cursor returned by getAllRecords() is the object by which the ListView population mechanism in the adapter obtains data for display. You provide this Cursor to the adapter as the second argument to its constructor.
2. Also understand that after any change to the database that you make (add, update, delete) this Cursor will not know about that change. So you must call

myCursorAdapter.changeCursor(databaseHelper.getAllRecords());
after any change you make to the database. (It is equivalent in effect to notifyDataSetChanged() for BaseAdapters.) getAllRecords() will return a new Cursor (pointing at the new database contents) to changeCursor() and the screen display list will be refreshed to reflect the changes.

Page 12 of 12

