Android – Part 9 – Threads
Current 04/19/2011
Brief Review of Java Runnable Threads

The idea of multithreading is simple: you somehow have two or more sequences of instructions executing “at the same time”. That phrase could literally mean at the same time if your computer has multiple CPUs and can run the different sequences on the different CPUs. You have two (or more) “brains” working on different parts of a problem, or even doing different things.

If you have only one CPU in your computer, the CPU is made to rapidly switch back and forth between or among the code sequences (or Threads) so it can look like it is doing several things at the same time. In Java, the Java VM will take care of the switching (even if you have more than one CPU you may have even more threads, so some switching would still be necessary).
Threads are often used to do background processing, or to handle tasks that would slow down the responsiveness of an application. For example, code with just one thread (sequence of instructions) that is busy executing a loop to download and store bits from an audio file cannot process a user button-click to clear an EditText box. So we put the download code in a separate thread and both sequences can happen concurrently – at the same time – or at least appear to.
You may recall that in traditional Java, one way to implement multithreading is to use the Runnable interface. Let’s review that quickly.

The Runnable Interface has one method: public void run()
In a class you are writing where you want to start a separate Thread of execution to do some of the work (a graphical animation, a large file download, a periodic update of a clock, etc.) you will do the following:

1. Declare a new Thread:
Thread runner;

2. Code the run() method that object:

public void run()

 {

 // write the code that is to execute as a separate thread of execution

 }
3. Declare that the class that contains the run() method implements Runnable.
class A extends Something implements Runnable

 { code, code, code, including the run() method ...}
4. Create the new Thread, passing as an argument a reference to the object that will implement Runnable; that is, the object that will have the run() method:
runner = new Thread(this); // maybe not this, maybe some other object…

5. Start the new thread:

runner.start();// this will cause the run() method to be called in a separate

 // thread of execution.
This skips a number of details (like how to stop a Thread; how to extend the Thread class, etc.) but it will do for a quick review. The O’Reilly book Head First Java has an excellent explanation of traditional Java Threads.
Runnable is the most common way to implement multithreading in Java, in part because the run() method, as a method of the main class, has access to the instance data and methods of that class.

The Android Framework

A major difference between traditional Java GUI programming and Android GUI apps is this: only the Thread that created an Android GUI widget is allowed to update it (for example, do a setText()). Another way to say it: only code that runs in the same thread that created the widgets can update them. In short, the main thread of an Activity (sometimes called the UI Thread) is in charge of both creating and updating widgets. No other thread can update the UI (with one or two minor exceptions).

The reason for this is that a mobile device must remain responsive to user input and to interruptions (an incoming phone call) at all times. In fact, the operating system may shut down your app without warning after 5 seconds of no response on the UI thread. If the UI thread is busy downloading data or doing a long calculation, pressing a Button or handling a phone call cannot occur.
Therefore any long-running task (longer than a second or two) on an Android device should be handled in a background thread, and when it is finished – or periodically while it is working – results can be sent to the UI thread if some update to the screen is needed.

Now suppose you create a new Thread in your Activity’s code. The run() method of this new Thread – even if the Activity implements Runnable and the run() code is in the same object (the Activity) as the widgets – cannot update the widgets’ contents. Not only that, the run() method cannot call any other method in the widgets’ “home class” to do any widget updating, since that called method is still run under the same thread that called run(), and run() is executed in that Thread object. In other words,
1. Thread th is created from the UI thread. th is a new Thread.
2. Someone calls start() on Thread th.

3. It calls run() (it doesn’t matter where run() is coded/defined; its instructions execute under the Thread th).
4. run() can call any method in its scope, but the instructions in that method still run under the Thread th.
5. And so neither run() nor any code it calls can alter/update a widget.
The Android Thread Handler Method

There are several ways in Android Java to get around the problem noted above. One way is to use (subclass) the Handler class. It is created in the UI Activity and runs in the UI Thread. It has methods designed to receive callbacks (with certain data arguments) from a Thread and can then execute code in the UI Thread using these arguments – thus allowing widget updating.

If the background thread has access to this Handler object, it can call one of several special methods of the Handler class to update the UI. Note that this is different from just calling any old method from run() – these would still execute in run’s thread. The special methods of Handler are different and allow run() to indirectly access the UI thread.

Here is the skeleton of this framework.

When you want to start a new Thread, create it. The code below supplies the run() method as part of the creation of the new Runnable object which is passed to the Thread constructor. You don’t have to do it this way – but it is commonly coded as shown.
Thread background = new Thread(new Runnable()

{
// start anonymous Runnable class body
// it is an inner class with access to instance variables such as the

// handler reference (explained later)
public void run()

 {
 try //if there are some exception-throwers in this
 {

 //some loop, usually
 for (//loop stuff)
 {

 // some code and then you want to call some UI update in

 // the main UI Activity thread.

 // See notes on obtainMessage() and sendMessage() below

 handler.sendMessage(handler.obtainMessage(1, a, b));
 } // end for
 } // end try

 catch (Throwable t)
 {
 // whatever’s needed

 }
 } // end run
}); // end anon Runnable class
// now call background’s start() which calls run()
background.start();
Notes:

1. handler is an instance of the Handler class (see below). It has methods to receive information from sendMessage().

Note that handler is assumed here to be in the scope of the run() method. If it is not, you could pass it as an argument to a new Thread-derived class – but of course that means you would have to write a subclass of Thread with that argument in the constructor (and possibly others as appropriate).

2. The Thread background is declared in the Activity’s global scope so it can be started from any code in the class.

3. The last ‘)’ is needed to close the opening ‘(‘ between new Thread and new Runnable. Everything between ‘(‘ and ‘)’ is the body of the anonymous Runnable object.

4. Handler.obtainMessage() returns a Message object from an existing pool of such objects and sets (fills in the values of) instance variables in that Message object to the values supplied as arguments.
The Message class contains 3 int instance variables. The names are what, arg1, and arg2 (for the three ints, in order)

There are several overloaded obtainMessage() variants that allow us to specify values for none, or some of these instance variables; there is one version that allows a 4th argument, obj, for an Object.

In the code above, we use the 3-int-arg variant. So the Message created is created with its 3 int instance variables set to the 3 values we supply here: 1, a, and b.

The values 1, a, and b in this code have no special meanings and are just used as placeholders for the 3-int version of obtainMessage().
The Message thus created is then sent to the Handler object via handler.sendMessage().
Now here is a skeleton Handler subclass, coded in the same class as the UI Thread with the widgets that need updating based on messages from the Thread.
Handler handler = new Handler()
 {
 @Override
 public void handleMessage(Message msg)
 {
 // -msg contains several fields. The arg names for the 3-int version used

 // above are named what, arg1, and arg2. They are public variables.
 // -Use them as needed (clearly, there has to be an “understanding”
 // between sendMessage() in run() and handleMessage() here.

 // -So use msg.what, msg.arg1, and msg.arg2. For example:
 aTextView.setText(“Msg has a’s value as “ + a.toString());

 };

Notes:

1. handleMessage() is the callback that is called when a thread issues a sendMessage() to a Handler. The variables that we set in obtainMessage() earlier are now accessible as msg.what and msg.arg1, msg.arg2. They are the 1, a, and b shown earlier.
2. There is no ending ‘)’ here since this is already closed: Handler(). But we can still include the body of the class here.
3. The @Override marks the fact that Handler has a handleMessage() that is being overridden here. (It is not required.)
4. The code in handleMessage() can update widgets in the current UI thread.
5. If we had sent a 4th Object argument, it would be accessible here as msg.obj (and would need to be correctly typecast to be used).

So sendMessage() says “Here’s a code for what to do, and here’s some data to do it with” and handleMessage() looks to see what to do and then executes code to do it with the data sent. The code is in handleMessage() but the task type and data come from the thread.

There is another method of the Handler class, post() which can actually supply code to be executed on the UI.
The post() method supplies its code via a reference to a Runnable object. Code in that Runnable object’s run() method is what is executed by the Handler. There is no callback in the Handler like there is for sendMessage() – handleMessage(). In this case, the code in the passed run() isjust execute, but it is excecuted in the handler’s thread, the UI thread (normally).
Here is some – very compact – code to illustrate this.

[go on to next page]
Declare:

private Handler handler;

private ProgressBar progress;

In onCreate() do:

progress = (ProgressBar) findViewById(R.id.progressBar1);

handler = new Handler();

// Method to define long-running task

public void startProgress(View view)

 {

 // Do something long

 Runnable runnable = new Runnable()

 {

 @Override

 public void run()

 {

 for (int i = 0; i <= 10; i++)

 {

 int value = i;

 try

 {

 Thread.sleep(2000);

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 handler.post(new Runnable()

 {

 @Override

 public void run()

 {

 // this will be executed on the handler’s thread

 progress.setProgress(value);

 } // end post’s run()

 }); // end post’s Runnable

 } // end for loop

 } // end long-task Runnable

 }; // end startProgress

new Thread(runnable).start();

Notes:

1. startProgress() is just a method to be called when this background task is to be executed.

2. runnable is declared locally in startProgress().
3. setProgress() sets the amount of color filled in on a ProgressBar (part of the user interface).
4. ProgressBars are one of the few exceptions to the rule that non-UI code cannot access the UI thread. Because of this it would not be necessary to use this technique here, but it is a nice short example. Change the ProgressBar to a TextView and do a setText() on if you like.
One final note: both sendMessage() and post() have variations that allow the action specified to be executed at a later time. See http://developer.android.com/reference/android/os/Handler.html for more details.

AsynchTask
The AsynchTask class allows another way to do background threads.

The material below is adapted from:
http://developer.android.com/reference/android/os/AsyncTask.html

AsyncTask enables proper and easy use of the UI thread. This class allows us to perform background operations and publish results on the UI thread without having to (directly) manipulate threads and/or handlers.

An asynchronous task is defined by a computation that runs on a background thread and whose result is published on the UI thread. An asynchronous task is defined by 3 generic types, called Params, Progress and Result, and 4 steps, called onPreExecute, doInBackground, onProgressUpdate and onPostExecute.

AsyncTask must be subclassed to be used. The subclass will override at least one method (doInBackground(Params...)), and most often will override a second one (onPostExecute(Result).)

Here is an example of subclassing AsynchTask:
Note1: the syntax URL…url. Basically, the last parameter of any method call can have Type....
This is converted to Type[]. So what you have here is a fancy way of saying URL[] url
Note2: The Downloader.downloadFile() may not be real. Just assume it does what it says it does somehow.
 private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
 protected Long doInBackground(URL... urls) {
 int count = urls.length;
 long totalSize = 0;
 for (int i = 0; i < count; i++) {
 totalSize += Downloader.downloadFile(urls[i]);
 publishProgress((int) ((i / (float) count) * 100));
 }
 return totalSize;
 }

 protected void onProgressUpdate(Integer... progress) {
 setProgressPercent(progress[0]);
 }

 protected void onPostExecute(Long result) {
 showDialog("Downloaded " + result + " bytes");
 }
 }

Once created, a task is executed very simply:

 new DownloadFilesTask().execute(url1, url2, url3);

AsyncTask's generic types

The three types used by an asynchronous task (in the example above, they are <URL, Integer, Long>) are the following:

1. Params, the type of the parameters sent to the task upon execution.

2. Progress, the type of the progress units published during the background computation.

3. Result, the type of the result of the background computation.

Not all types are always used by an asynchronous task. To mark a type as unused, simply use the type Void:

 private class MyTask extends AsyncTask<Void, Void, Void> { ... }
The 4 steps

When an asynchronous task is executed, the task goes through 4 steps:

1. onPreExecute(), invoked on the UI thread immediately after (?? before ??) the task is executed. This step is normally used to setup the task, for instance by showing a progress bar in the user interface.

2. doInBackground(Params...), invoked on the background thread immediately after onPreExecute() finishes executing. This step is used to perform background computation that can take a long time. The parameters of the asynchronous task are passed to this step. The result of the computation must be returned by this step and will be passed back to the last step. This step can also use publishProgress(Progress...) to publish one or more units of progress. These values are published on the UI thread, in the onProgressUpdate(Progress...) step.

3. onProgressUpdate(Progress...), invoked on the UI thread after a call to publishProgress(Progress...). The timing of the execution is undefined. This method is used to display any form of progress in the user interface while the background computation is still executing. For instance, it can be used to animate a progress bar or show logs in a text field.

4. onPostExecute(Result), invoked on the UI thread after the background computation finishes. The result of the background computation is passed to this step as a parameter.

Page 1 of 9

